
Connecting the Web with the Web of Things:
Lessons Learned From Implementing a CoAP-HTTP Proxy

Christian Lerche, Nico Laum, Frank Golatowski, Dirk Timmermann
University of Rostock

Institute of Applied Microelectronics and Computer Engineering
18119 Rostock, Germany

{firstname.lastname}@uni-rostock.de

Christoph Niedermeier
Siemens AG

Corporate Research and Technologies
christoph.niedermeier@siemens.com

Abstract—The Constrained Application Protocol (CoAP) is
a lightweight application layer protocol for the Internet of
Things. CoAP is based on HTTP mechanisms to build RESTful
web services. In contrast to HTTP, CoAP was designed for
machine-to-machine (M2M) communication and uses a binary
representation. This allows efficient transport and processing
in resource-constrained networks such as Wireless Sensor
Networks (WSN). Due to the analogy to REST, a mapping
between CoAP and HTTP is possible.

In this paper one of the first translating CoAP-HTTP
proxies is presented, that provides HTTP clients transparent
access to CoAP resources and vice versa. Furthermore, caching
relieves CoAP servers, which solves a key challenge for the
Internet of Things: to allow a constant/permanent availability
of resources from a network of constrained devices, which are
required to minimize data transmissions due to their noticeable
restrictions in power consumption. We describe, which issues
of the translation we found during the time of implementation
and testing, and explain how the proxy handles these issues.
Finally, an evaluation, using real WSN hardware, is given, and
an approximation scheme on how much transmissions can be
saved by caching resources is provided.

Keywords-CoAP, HTTP, Proxy, Internet of Things, Con-
strained Networks, 6LoWPAN, Wireless Sensor Networks, Web
of Things, M2M

I. INTRODUCTION

One of the main enabler of the Internet of Things (IoT)
vision is the IPv6 over Low power Wireless Personal Area
Networks protocol [1], [2], referred to as 6LoWPAN. 6LoW-
PAN allows very small devices to become part of the Inter-
net. It specifies an efficient transport of IPv6 network trans-
missions for low power wireless personal area networks.
Initially, the protocol was designed to be used with the
low power wireless standard IEEE 802.15.4. IEEE 802.15.4
defines the physical (PHY) and medium access layer (MAC)
for wireless communication that is optimized for low power
devices like Wireless Sensor Networks (WSN). But 6LoW-
PAN is not limited to IEEE 802.15.4, therefore we fol-
low the notation of Shelby, Z. [3] and generalize these
networks as constrained networks. Devices being part of
these constrained networks, are referred to as constrained
devices. The communication within constrained networks

is characterized by a higher packet loss (5-10 %) and a
lower throughput (around 10 kbit s−1) than in IP Ethernet
networks [3]. Furthermore, the network structure is more
complex. Especially in WSNs, a mesh topology is used.
Compared to Star- and Bus topologies, used in Ethernet
networks, constrained networks are more complex in terms
of packet routing (multi-hop), mobility/roaming and network
management. Beyond this, the devices have higher resource-
constraints in terms of RAM and ROM, computational
power and energy. For example, sensor nodes usually have
only a few kB of RAM and ROM, relatively weak MCUs
with up to 100 MHz and are battery powered. In order to
achieve a high battery lifetime, radio activity and therefore
packet sizes must be reduced.

On top of the IP network layer, suitable application layer
protocols are on demand. In the Internet, HTTP is one of
the prevailing application layer protocols. But HTTP is not
suitable for the use in constrained networks due to several
reasons. Two of the main reasons are, firstly, the human-
readable, but non-efficient, ASCII data representation. Sec-
ondly, the TCP binding of HTTP, that requires a three-
way-handshake connection establishment to initiate connec-
tions and exchange data. To specify a lightweight HTTP
alternative for constrained networks, the IETF founded the
Constrained RESTful Environments (core) Working Group.
This Working Group developed the Constrained Application
Protocol (CoAP) which is currently in IETF draft status
[4] and is close to become a proposed standard. CoAP
aims to be a lightweight HTTP alternative for the use in
constrained networks. (A more detailed description is given
in this paper.)

One main advantage of CoAP is, that a general mapping
to HTTP is considered by the CoAP specification. This
is feasible because both protocols are based on REST
principles. Of course an additional intermediate is neces-
sary to translate between both protocols transparently. This
intermediate is referred to as translating proxy. The proxy
builds the connection between the Web and the Web of
Things by allowing HTTP clients to request resources from
CoAP servers and CoAP clients to request resources from



HTTP servers. In this paper we present a CoAP-HTTP proxy
implementation. Mainly, the proxy implements the mapping
between CoAP and HTTP (and vice versa). Furthermore,
the proxy allows caching of resources to avoid unnecessary
transmissions of equivalent resources.

In the following section (Section II) we give an overview
about the use of web services technologies in constrained
networks. Subsequently, we give a detailed introduction into
the lightweight RESTful protocol CoAP. This is necessary
to understand the proxy functionality. At the end of the
section we discuss the role of the proxy in the Web of
Things architecture. In Section III we give an overview about
related work and current CoAP implementations to show that
CoAP is a feasible application layer protocol for constrained
networks such as wireless sensor networks. In Section IV
and V we describe and evaluate the developed proxy. The
paper ends with a conclusion in Section VI.

II. WEB SERVICES FOR THE WEB OF THINGS

Originally, web protocols were designed for Human-
Machine (H2M) interaction. With the evolution of the Web
also Machine-Machine (M2M) applications became increas-
ingly important. Therefore web services are used. Especially
in the Web of Things, M2M applications dominate and the
choice of the right web service technology is important.
In the Internet two different types of web services are
the prevailing technologies. These are SOAP web services
and RESTful web services. Both are based on different
principles. In the following, each web service technology
is discussed briefly, with the focus on the use in constrained
networks. Afterwards, CoAP is presented as a lightweight
HTTP alternative to make use of RESTful web services in
constrained networks. Finally, the role of the presented proxy
in the Web of Things is described.

A. SOAP Web Services

SOAP web services were originally intended to invoke
Remote Procedure Calls (RPC). Today, they are often used
to implement Service-oriented architectures (SOA). A SOA
consists of several services. A service again, provides a
set of operations. To describe a service the Web Services
Description Language (WSDL) is used. As SOAP is only
an XML based message format, further specifications are
necessary around SOAP to provide functionality. These are
e.g., WS-Addressing, WS-Policy, WS-Eventing, etc.1. Due
to the huge number of specification, SOAP web services are
seen as very complex. For the use of SOAP web services
on devices, the Devices Profile for Web Services (DPWS)
[5] was specified to define a minimal set of functionality
for device communication, but the intended devices (e.g.,
Printer, Router, etc.) still have more resources than the
constrained devices focused in this paper. For that reason,

1Commonly referred to as WS-* specifications

some of the authors of this paper investigated the use
of DPWS in constrained networks [6]. It turned out, that
DPWS can only be used under specific conditions and high
implementation efforts are necessary.

B. RESTful Web Services

RESTful web services have become more famous as
they are less complex then SOAP web services [7]. The
main component in a RESTful architecture is a resource.
Compared to a service, a resource provides a fixed set of
operations to Create, Read, Update and Delete (CRUD)
a resource. A resource can be addressed by an URI. The
Web itself has a RESTful architecture based on the HTTP
protocol. HTTP covers the CRUD operations with the HTTP
operations PUT, GET, POST and DELETE. For that, HTTP
uses a Request-Response message pattern. As transport and
network layer TCP/IP is used, which inhibits asynchronous
and multicast messaging. To define the type and encoding
of the resource (e.g., HTML document, XML document,
Picture, etc.), HTTP uses MIME types. According to [3],
the advantages of RESTful web services in contrast to
SOAP web service are less parsing complexity, statelessness,
and tighter integration with HTTP. But although RESTful
web services are more simple in concept, HTTP and XML
payloads were not designed to spare resources.

C. The Constrained Application Protocol

CoAP has been developed as a lightweight alternative for
HTTP. The aim of CoAP according to the CoAP specifica-
tion [4] is “not to blindly compress HTTP [RFC2616], but
rather to realize a subset of REST common with HTTP but
optimized for M2M applications”.

Because of the huge overhead of TCP, CoAP uses UDP
as transport protocol. In contrast to TCP, UDP does not
guarantee a successful transmission (reliability) and that
packets are transmitted in the right order (ordering), hence
CoAP defines an additional Message Layer. This layer de-
fines four packet types, which are Confirmable (CON), Non-
Confirmable (NON), Acknowledgement (ACK) and Reset
(RST). Confirmable packets (CON), sent by the client, are
acknowledged (ACK) by the server. In case a server cannot
accept a new packet, the server resets the connection (RST).
If the client does not receive any answer after a given time,
it retransmits the request. As reliability causes unnecessary
overhead in some cases, reliability is optional in CoAP. If
reliability is not necessary, a client sends a NON packet
instead of a CON and the server answers with a NON packet
(only) if an answer is requested. As UDP does not allow any
assumption about the ordering and duplication of transmitted
packets, every packet has a mandatory 16 bit message ID to
allow an assignment of requests and responses.

As the scope of CoAP are constrained networks, very
small payloads are assumed. However, larger payloads are
possible in some cases. Because UDP is not a streaming



protocol like TCP and, furthermore, to avoid fragmentation
on 6LoWPAN layer, CoAP defines blockwise transfers [8],
where the payload is transferred in several blocks and each
block is acknowledged separately.

The CoAP Request/Response layer on top of the Message
Layer, provides the four HTTP operations PUT, GET, POST
and DELETE. Similar to HTTP, the server responds with a
status code. In contrast to HTTP, CoAP uses binary header
representations, hence, the mandatory CoAP header requires
only 4 Byte. Additionally to that, CoAP defines further
optional header options (similar to HTTP), like e.g., the
type of the content (Content-Type), how long a resource is
valid (Max-Age), etc. A header option consists of a constant
option number and a value. If the option number is even,
the option elective. If the option number is odd, the option
is critical. If a server or a client receives a CoAP message,
containing an unknown critical option, the message must be
rejected. A list of the main header options is given in [4].

To address CoAP endpoints, URIs are used. To reduce
packet size as much as possible, the used URIs should be as
short as possible. Every part of an URI (host, path, query)
is included in a separate header option to reduce parsing
complexity.

Because CoAP is intended for the use in M2M applica-
tions, CoAP provides some additional features, that are not
provided by HTTP. Firstly, CoAP allows unreliable multicast
messaging. Secondly, it allows asynchronous messaging to
provide an observer message pattern [9]. Thirdly, every
CoAP server provides a list of all hosted resources, at a
well-known address. This allows discovery of resources. The
format of the list is defined by the CoRE Link Format [10].

D. The Proxy in the Web of Things

In Figure 1 the Web of Things architecture is shown as
referred to in this paper.

Due to a common IP network layer, CoAP servers can
be accessed by CoAP clients directly, no matter if they
are located inside the constrained network (Fig. 1, a)) or
outside in the Internet (Fig. 1, b)). The same is true for
HTTP (Fig. 1, c)). To allow HTTP clients to access CoAP
endpoints and to allow CoAP endpoints to access HTTP
servers, a translating proxy is necessary (Fig. 1, d) and e)). In
Figure 2 typical protocol stacks for normal and constrained
networks are shown. A router2 connects IPv6 networks with
6LoWPAN networks. The proxy translates on application
layer and can therefore be located anywhere in the Internet.
This is in contrast to common WSN gateways (Fig. 1, f)). As
proprietary networks mostly have their own network layer,
the gateway connects the proprietary network on all layers
and must therefore be located at the edge of the WSN. As
stated in [7]: “The gateway must be tailored to the specific

2Routers that connect an IPv6 network with a 6LoWPAN network are
called 6LoWPAN Edge Router or 6LoWPAN Border Router

Constrained 
NetworkThe Internet

Proprietary 
Constrained Network

c)

Request

b)

S: Server
C: Client
E: Endpoint (Server & Client)

CoAP

HTTP

a)

d)

e)

f)

Figure 1. Web of Things Architecture

Application

CoAP Req/Res

6LoWPAN Link and
Physical

Layer

Application
Layer

Network and
Transport

Layer

Application

HTTP

UDP

IPv6

IEEE 802.15.4

IPv6

TCP

Ethernet /
WLAN

Proxy

CoAP Message

Router

Figure 2. Communication Stacks for RESTful Web Services in Normal
and Constrained Networks

protocols used inside the sensor network.” In contrast to
that, the proxy is independent from the application data and
the application logic and, consequently, does not need to be
changed when the application changes.

Although the proxy should act transparently as possible,
it is not feasible to design a fully transparent proxy. At
least one partner (server or client) must have knowledge
of the existence of the proxy3. Consequently, there are two
different types of proxies:

3For the sake of completeness: There are Interception Proxies which do
not require neither the server nor the client to be configured, but Interception
Proxies require a specific network configuration and are therefore not
considered.



a) Forward Proxy: Instead of making a request directly
to the server, the client sends the request to the proxy. The
proxy then forwards the request to the server. For the server,
the proxy behaves as if it would be a client. Consequently,
the client needs to be configured to make use of the proxy,
no configuration is necessary for the server (Zero Server
Configuration (ZSC)).

b) Reverse Proxy: A reverse proxy is not known by the
client. The client expects a normal server at the location
of the proxy. The proxy then forwards the request to the
hidden server. Therefore the server must be associated with
the proxy. Consequently the client does not need to know
that the proxy exits and no configuration on client side is
necessary (Zero Client Configuration (ZCC)).

Mostly forward proxies are used in the Internet and unless
otherwise stated in this paper, the term proxy refers to a
forward proxy. The presented proxy is also a forward proxy,
which means that the client needs to be configured, the
server not.

According to [11] translating proxies can be further clas-
sified as follows:

a) Protocol-aware access: The client knows about the
cross-protocol translation and specifies (e.g., by the URI
scheme) if a translation should be performed.

b) Protocol-agnostic access: The client does not know
anything about the cross-protocol translation. A mapping is
silently done by the proxy.

The presented proxy implements a CoAP to HTTP
protocol-aware mapping, but a HTTP to CoAP protocol-
agnostic mapping. This has several reasons which are de-
scribed in more detail in Section IV.

Furthermore, as known from common HTTP proxies,
the proxy can cache resources and, consequently, reduce
network traffic inside the constrained network. This is
also useful for CoAP to CoAP communication inside the
constrained network, especially, when many clients request
resources from a single server. A more detailed discussion
is given in the following Sections IV and V.

To sum up, the proxy has an important role in the
architecture of the Web of Things, since the proxy allows
a direct web service based communication between Internet
end-points and constrained devices.

III. RELATED WORK & IMPLEMENTATIONS

Because CoAP is a very new protocol, which is not yet
a standard, only a few implementations and evaluations are
published. According to what is known, the only published
CoAP-HTTP proxy implementation is given in [12]. In the
paper a one-way HTTP to CoAP proxy implementation is
presented, which allows HTTP clients to request resources
from a CoAP endpoint. The implementation is a server-
side proxy located at the edge of a WSN. Caching was not

considered. As proof of concept a web browser requesting
a CoAP resource is presented, further evaluations are not
given.

The following publications give an overview about cur-
rent CoAP implementations and their use in constrained
networks, to show that CoAP is a promising web service
technology for constrained networks. This is important, as
the proxy only adds a value, if CoAP is a feasible web
service technology for constrained networks.

An early stage implementation of CoAP (draft version 3),
called libcoap, for the use on resource-constrained devices
is described in [13]. Libcoap is available for the operating
systems TinyOS and Contiki. The evaluation shows, that a
complete request can be performed in between 70-400 ms
(single hop) while the number of transmitted bytes ranges
from 120 B to 230 B. The application scenario is a WSN in
a cargo transport container. The authors conclude that CoAP
is a feasible web service protocol for the use in constrained
networks.

In [14] a newer (draft version 7) implementation of CoAP
for Contiki is presented. In contrast to [13], the authors
evaluated the use in multi-hop WSNs with a duty cycling
MAC layer4. For the evaluation the same hardware was used.
The response time strongly depends on the number of hops
and the duty cycling parameters.

For the Human-to-Machine interaction (H2M) with
resource-constrained CoAP endpoints, the Firefox CoAP
Plugin Copper is presented in [14]. It allows users to
perform a CoAP request. (Note: Although Firefox is a
HTTP client, Copper implements pure CoAP, no HTTP
translation/mapping is included).

In summary, it can be stated, that although CoAP is a
very new web service protocol, first implementations and
evaluations have shown that CoAP can be implemented on
constrained devices and the overhead of the CoAP headers
is small enough to be transported in constrained networks.

IV. COAP / HTTP PROXY IMPLEMENTATION

In this chapter the proxy implementation is described.
The proxy acts as server and as client. The developed
translating proxy therefore has two client modules and two
server modules as shown in Figure 3. This implies four
different message flows. These are CoAP to HTTP (1),
CoAP to CoAP (2), CoAP to HTTP (3) and finally HTTP to
HTTP (not shown). The first three cases are covered by the
implemented proxy. The forth case equals the behavior of a
common HTTP proxy and is therefore not implemented.

The implemented proxy is part of the jCoAP5 library. It
is implemented in Java and runs on any system that runs a

4Duty cycling means, that the radio is turned off most of the time. The
radio is only turned on in fixed intervals to check if some data is available
or when there is some data to be send. The used MAC implementation in
this paper was ContikiMAC

5http://www.ws4d.org/ws4d-jcoap



CoAP Server

CoAP Client

HTTP Server

HTTP Client

Mapper

Cache

1)

2)
3)

Figure 3. Modularised Structure of the Proxy

Java VM. The core part of the proxy is the mapper module.
The mapper module performs the described translations.

In the following sections, several aspects of the proxy
implementation are described in more detail.

A. How to determine if a mapping should be performed.

On an incoming request, regardless of the protocol, the
proxy needs to decide if a mapping needs to be performed
or not. As the CoAP protocol was designed with the mapping
in mind, CoAP defines the Proxy-Uri header option. If
present, this option indicates that the client is aware of an
intermediate proxy. To indicate that a proxy should perform
a mapping, the Proxy-Uri must have an “http” or “https”
scheme. As secure connections are currently not supported
by the proxy, the Proxy-Uri scheme must be either “coap”
(no mapping) or “http” (a mapping is performed).

The HTTP specifications does not consider any mapping
and has therefore no intended mechanisms. According to
[4], a “coap” or “coaps” scheme of a request URI indicates
that a mapping should be performed. However, HTTP does
not require an absolute Request-Uri, and many clients (like
Firefox that was used for testing) omit the protocol scheme
and the URI host. If no scheme is giving, the proxy can
not determine if mapping to CoAP should be performed or
if the client wishes the proxy to behave as a non-mapping
HTTP proxy. However, as the proxy does not implement the
HTTP to HTTP message flow, a mapping is performed in
any case, even if no protocol scheme is given in the Request
URI or the scheme is “http”. This means that the use of the
proxy implies a mapping wish.

B. Header Options

The CoAP core specification defines 14 different header
options. The Uri-Host, Uri-Path and Uri-Query options are
mapped to the HTTP request URI and vice versa. The Proxy-
Uri option is handled by the proxy itself as described in the
previous section. The Token option6 is only handled when
the proxy acts as CoAP server (CoAP to HTTP mapping). In
case of a Token option, the token is saved inside the proxy
and added to the final response. How the Max-Age option
is handled is described in Section IV-E about caching. All

6The Token option can be used by clients to multiplex parallel requests.
A server only needs to copy the token from the request to the response.

remaining CoAP header options are directly translated to the
corresponding HTTP header options and vice versa. These
are: Content-Type, ETag, If-Match, If-None-Match, Accept,
Location. The HTTP Content-Length option is automatically
generated. The size is determined by using the UDP packet
length.

C. Message Layer

As previously described, CoAP provides either reliable or
unreliable messaging. In case of an incoming CoAP request
(CoAP to HTTP mapping), the CoAP client determines
if reliable or unreliable messaging is used. In case of a
HTTP request (HTTP to CoAP mapping), the proxy acts as
client and therefore predetermines if reliable or unreliable
messaging is used. By default, the proxy uses reliable
messaging, however, the proxy can be easily configured to
use unreliable messaging.

D. Operations

HTTP defines more options than CoAP. PUT, GET, POST
and DELETE are known by both protocols and can therefore
be translated directly. The HTTP HEAD operation allows
a HTTP client to only request the HTTP header. When
translated to CoAP, the CoAP GET operation is used.
After receiving the response, the payload of the response is
removed during translation. All other operations (TRACE,
OPTIONS, CONNECT, PATCH) cannot be mapped and a
501 Error (“Not Implemented”) is returned by the proxy.

E. Caching

Caching is a core feature of HTTP and CoAP to reduce
network traffic by avoiding the transmission of equivalent
resources. During the implementation of the proxy, it turned
out, that only the Max-Age option of CoAP does not allow
to determine exactly how long a resource is valid due to the
transmission time.

Because CoAP does not provide a Date header option
like HTTP, it is not possible to determine exactly when
the resource was created. Based on the assumption, that
the creation time is at some point between the time when
the request was sent and the respond is received, three
strategies are conceivable of how to determine how long
a resource is valid. In Figure 4 all three cases are shown.
In case a) the creation time is assumed to be at the time
when the request is sent by the client. This leads to a
False Positive (resource is withdrawn although it is still
valid). In case b) the creation time is assumed to be at the
time when the response is received. This leads to a False
Negative (resource is assumed as valid but already expired).
In case c) a synchronous transmission is assumed (the
request transmission time equals the response transmission
time) and the creation time is approximated by the half of
the round trip time. This can reduce the error but the error
classification can not be determined. The proxy implements



Server
Proxy

(Client)

 li
fe

tim
e

False
Positive

False
Negative

tRequest

tResponse

tHalftime
tCreate

Figure 4. Caching Faults

the third case by default, however, the proxy can be easily
changed to use any other strategy.

The described error is also relevant for normal CoAP
clients but in case of a proxy the error occurs at least twice
(server to proxy and proxy to client). CoAP does not define a
Date option like HTTP with respect to constrained-devices
that often does not have a global clock. However, a Date
option could be useful in case of CoAP devices that have a
global clock. Therefore this paper proposes a CoAP Date
header option as follows: The option number should be
elective, that means, the option number could be any not
used even number. The value should be an 4 B unsigned
integer containing the UNIX Date time7.

F. IPv4 and IPv6

Because TCP (transport layer of HTTP) and UDP (trans-
port layer of CoAP) can be used with both IPv4 and
IPv6, the proxy can also be used for IPv4-IPv6 protocol
translation. Currently IPv4 is the prevailing protocol version
in the Internet, whereas constrained-devices with 6LoWPAN
require IPv6 based communication. The intermediate proxy
solves this issue. The proxy accepts both protocol versions
on both interfaces.

V. EVALUATION & RESULTS

To evaluate the correct behavior of the proxy, mapping and
caching functionalities were tested. In Figure 5 the experi-
ment setup is shown. As hardware reference platform Cross-
bows TelosB is used. The TelosB is a widely known wire-
less sensor development board. It is based on an MSP430
microcontroller and equipped with an IEEE 802.15.4 radio
chip, light and temperature sensors, and an USB interface
for programming and debugging. The MSP430 operates at
8 MHz and has 10 kB of internal RAM and 48 kB Flash
memory.

7seconds since 00:00:00 UTC on 1 January 1970

Proxy
PC

jCoAP-Proxy

Client PC
Firefox / Copper

Edge
Router
Contiki

USB6LoWPAN

CoAP
Server
Erbium

LAN

Web Server

Figure 5. Experiment Setup

The CoAP server implementation for TelosB is based on
Erbium8. Erbium is a CoAP implementation for Contiki that
implements the 6LoWPAN and IPv6 communication layer.

The Firefox plugin Copper is used as CoAP client. A
common Firefox 11.0 browser (without Copper) serves as
HTTP client. The HTTP server is a common Apache web
server.

All components, except the wireless sensor, are located
within the same Ethernet LAN. The wireless sensor is
connected to the LAN via a 6LoWPAN edge router.

A. Mappings

All message flows described in Section IV were tested.
In the following each test configuration is described.

1) HTTP to CoAP: In the first case, a HTTP client
requests a CoAP resource on a CoAP resource server.
Therefore the Firefox proxy settings must be changed.
(remember that the implemented proxy is a forward proxy
and therefore the client is aware of the intermediate). The
proxy address of Firefox is set to the address of the proxy.
As Firefox does not know anything about CoAP, the Firefox
browser assumes a common HTTP proxy (protocol-agnostic
access). In Firefox then a GET request to the CoAP Erbium
server on the TelosB can be sent directly to the address
of the CoAP server (http://[constrained device
address]:[port]/[resource path]).

2) CoAP to HTTP: In the second case, a CoAP re-
quest is sent to a HTTP server. Copper is used as
CoAP client. To enable proxying, the Proxy-Uri option
must contain the request URI (http://[web server
address]:[port]/[resource path]). Then the re-
quest is sent to the proxy directly.

3) CoAP to CoAP: In the third case, a CoAP re-
source is requested by a CoAP client. Again, the
Copper client is used but with a different Proxy-
Uri, containing a coap scheme and the address of the
constrained device (coap://[constrained device
address]:[port]/[resource path]. No mapping
is performed in this case, the proxy acts as a normal proxy.

B. Caching

Caching can reduce network traffic by avoiding unnec-
essary transmissions of equivalent resources. Especially in

8http://people.inf.ethz.ch/mkovatsc/erbium.php



Table I
CACHING RATE FOR A DIFFERENT NUMBER OF CLIENTS (x) WITH A

FIXED CACHING PERIOD OF tC = 20s AND A FIXED CLIENT REQUEST
INTERVAL tR = 10s

rtheor. rreal

x = 1 50 % 66.0 %
x = 2 75 % 79.1 %
x = 5 90 % 90.4 %

x = 10 95 % 94.8 %

the case when a lot of clients request a single resource
frequently.

For evaluation purposes, the following generic scenario
is assumed: x clients request a resource frequently with an
interval tr = 1/fr through the proxy, the resource is cached
for the time tc by the proxy. This means that in the worst case
the proxy makes a request to the constrained device with a
frequency of fc = 1/tc. In a given time t the proxy would
make t·fc requests to the constrained device. The number of
requests to the proxy is given by x · fr · t. Consequently the
number of requests that are served from the cache can be
approximated by the difference of these two values, which
is x ·fr ·t−t ·fc The amount of requests that are served from
the cache in contrary to the theoretical number of requests
without a proxy is referred to as caching rate r and defined
as follows:

r =
number of requests served from cache

number of total requests
(1)

Hence, the theoretical caching rate r is (Note that t can
be canceled):

r =
x · fr − fc

x · fr
(2)

The caching rate r is an indicator of how many requests
to the server could be avoided. A caching rate of 0 % means
no caching. A caching rate of 100 % means all requests are
served from the cache (not possible, at least one request
is necessary). For a fixed time, the caching rate increases
when, firstly, the number of clients x increases, secondly,
the caching time tc increases and thirdly, the frequency of
requests fr increases.

In Table I the results of an experiment are shown, that
proofs the quality of the presented caching rate approxima-
tion. In the first three cases the caching rate is slightly better.
The difference can be explained among others with the effect
described in Section IV-E. As described, the proxy caches
resources too long by default (False negative), therefore the
caching rate can become better than theoretically possible.
Furthermore, the approximation does not cover the case, that
two requests from two different clients occur shortly one
after the other. The second request will also be forwarded
(wrongly) to the constrained device because the response
from the first request was not yet received by the proxy and

is therefore not in the cache. This case leads to a worse
caching rate like in the forth case.

As shown in Table I the approximated caching rate
allows a quantitative statement about how much the proxy
can reduce the number of requests within the constrained
network.

VI. CONCLUSION AND OUTLOOK

We have presented one of the first public available trans-
lating CoAP-HTTP proxies, that provides HTTP clients
transparent access to CoAP resources and vice versa. It
can be seen as a proof of concept of the CoAP-HTTP
mapping defined by the CoAP protocol specification. The
proxy allows a high flexibility in creating Internet of Things
applications, due to its independence from the application
logic in contrast to common application gateways.

First tests have shown, that the implementation works
according to the specification and is compatible with other
existing CoAP implementations and common HTTP servers
and clients. As the proxy is open source licensed, it is likely
that more evaluations and enhancements will be made by the
IoT community in the near future.

For future work, a great potential in the area of security
can be seen. The additional intermediate has the advantage
that basic security aspects can be taken over by the proxy,
that have usually more resources than the constrained de-
vices. If the proxy is located at the edge of the constrained
network (e.g., the constrained network is protected by a
firewall), the proxy could detect traffic overloads and avoid
them. Furthermore the proxy could provide a HTTPS (HTTP
+ TLS) interface, so that the communication outside of
the constrained network (e.g., the Internet) is encrypted. In
addition, the proxy could allow only authenticated clients
access to the constrained network.

ACKNOWLEDGMENT

The authors would like to thank the Corporate Research
and Technologies Division of Siemens AG, Germany for
their inspiration and continued support.

REFERENCES

[1] N. Kushalnagar, G. Montenegro, and C. Schumacher,
“IPv6 over Low-Power Wireless Personal Area Networks
(6LoWPANs): Overview, Assumptions, Problem Statement,
and Goals,” RFC 4919 (Informational), Internet Engineering
Task Force, Aug. 2007. [Online]. Available: http://www.ietf.
org/rfc/rfc4919.txt

[2] G. Montenegro, N. Kushalnagar, J. Hui, and D. Culler,
“Transmission of IPv6 Packets over IEEE 802.15.4
Networks,” RFC 4944 (Proposed Standard), Internet
Engineering Task Force, Sep. 2007, updated by RFC
6282. [Online]. Available: http://www.ietf.org/rfc/rfc4944.txt

[3] Z. Shelby, “Embedded web services,” Wireless Communica-
tions, IEEE, vol. 17, no. 6, pp. 52 –57, December 2010.



[4] Z. Shelby, K. Hartke, C. Bormann, and B. Frank,
“Constrained Application Protocol (CoAP),” IETF, Tech.
Rep., March 2012, draft. [Online]. Available: http://www.
ietf.org/id/draft-ietf-core-coap-09.txt

[5] D. Driscoll and A. Mensch, “Devices Profile for Web
Services Version 1.1,” OASIS, Tech. Rep., July 2009.
[Online]. Available: http://docs.oasis-open.org/ws-dd/dpws/1.
1/os/wsdd-dpws-1.1-spec-os.pdf

[6] C. Lerche, N. Laum, G. Moritz, E. Zeeb, F. Golatowski, and
D. Timmermann, “Implementing powerful Web Services for
highly resource-constrained devices,” in Pervasive Comput-
ing and Communications Workshops (PERCOM Workshops),
2011 IEEE International Conference on, March 2011, pp. 332
–335.

[7] D. Yazar and A. Dunkels, “Efficient application integration
in IP-based sensor networks,” in Proceedings of the First
ACM Workshop on Embedded Sensing Systems for Energy-
Efficiency in Buildings, ser. BuildSys ’09. New York,
NY, USA: ACM, 2009, pp. 43–48. [Online]. Available:
http://doi.acm.org/10.1145/1810279.1810289

[8] C. Bormann and Z. Shelby, “Blockwise transfers in CoAP,”
IETF, Tech. Rep., February 2012, draft. [Online]. Available:
http://www.ietf.org/id/draft-ietf-core-block-08.txt

[9] K. Hartke, “Observing Resources in CoAP,” IETF, Tech.
Rep., March 2012, draft. [Online]. Available: http://www.
ietf.org/id/draft-ietf-core-observe-05.txt

[10] Z. Shelby, “CoRE Link Format,” IETF, Tech. Rep.,
January 2012, draft. [Online]. Available: http://www.ietf.org/
id/draft-ietf-core-link-format-11.txt

[11] A. Castellani, S. Loreto, A. Rahman, T. Fossati,
and E. Dijk, “Best practices for HTTP-CoAP
mapping implementation,” IETF, Tech. Rep., March
2012, draft. [Online]. Available: http://www.ietf.org/id/
draft-castellani-core-http-mapping-03.txt

[12] W. Colitti, K. Steenhaut, N. De Caro, B. Buta, and V. Dobrota,
“REST Enabled Wireless Sensor Networks for Seamless Inte-
gration with Web Applications,” in Mobile Adhoc and Sensor
Systems (MASS), 2011 IEEE 8th International Conference on,
October 2011, pp. 867 –872.

[13] K. Kuladinithi, O. Bergmann, T. Poetsch, M. Becker, and
C. Goerg, “Implementation of CoAP and its Application in
Transport Logistics,” in ”Extending the Internet to Low power
and Lossy Networks (IP+SN 2011)”, Chicago, USA, 2011.

[14] M. Kovatsch, S. Duquennoy, and A. Dunkels, “A Low-power
CoAP for Contiki,” in Proceedings of the IEEE Workshop
on Internet of Things Technology and Architectures,
Valencia, Spain, October 2011. [Online]. Available: http:
//www.sics.se/∼adam/kovatsch11low-power.pdf


