
Bridging the UI Gap
for Authentication in Smart Environments

Sebastian Unger and Dirk Timmermann
Institute of Applied Microelectronics and Computer Engineering

University of Rostock, Germany
Email: sebastian.unger@uni-rostock.de, dirk.timmermann@uni-rostock.de

Abstract—In this paper we describe a common problem when it
comes to mutual authentication of devices in smart environments.
Basically, there exist two approaches. In the brokered approach,
two parties authenticate with the help of a common trusted
party. However, this often introduces a single point of failure.
The alternative approach lets the devices authenticate with each
other directly, usually by exchanging a shared secret out of band.
But this is only possible if both devices have the necessary user
interface peripherals to establish an out-of-band channel.

We will describe an abstract basic protocol to bridge the
possible peripherals’ gaps by authenticating indirectly with the
help of nowadays basically omnipresent multimedia devices such
as smart phones. After extending the proposed protocol for more
complex use cases, we refine it to a practical authenticated key
establishment protocol for indirect authentication. Finally we
describe our freely available prototype implementation consisting
of an internet-of-things-enabled light bulb and light switch and
an Android app that comprise our proof of concept.

Keywords—Applied Cryptography; Authentication; DPWS; In-
telligent Environments; Internet of Things; Usability

I. INTRODUCTION

More than twenty years after ideas such as Pervasive Com-
puting and Smart Environments shifted into focus of computer
scientists ([1]), their security aspects are still often neglected
when developing new technologies. Despite the consensus,
that these visions will never become reality without providing
adequate security that protects our privacy, developing secure
solutions is considered expensive and not user-friendly ([2]).
To provide confidentiality for resource-constrained devices –
the atomic building blocks of smart environments and the
Internet of Things – lightweight cryptography such as elliptic
curve algorithms performs well. However, most unsolved
problems concern bootstrapping. That is, how to set up an
ensemble of previously unknown devices in a secure and
user-friendly way. Once the setup is accomplished, data can
be transmitted securely by encrypting it and sophisticated
authorization frameworks manage access to certain resources.

One approach to set up a secure connection between two
parties is to exchange a shared secret over a separated secure
channel, a so-called out-of-band (OOB) exchange. However,
this simple approach is limited to device pairs that have
matching peripherals to establish such an OOB channel such as
visual light, audio or NFC. For example, a light switch whose
only peripheral is the switch itself and a light bulb whose only
peripheral is the bulb itself have no way to exchange a shared
secret without supplying them with additional peripherals.

Trusted Party Trust Domain

a) b) c)

Participant

Fig. 1. Trust relationships a) brokered, b) direct c) brokered in trust domains

In this paper we present a solution to bridge these peripheral
user interface (UI) gaps by employing additional devices
already present in future smart spaces: multimedia devices.
There are up to dozens of TV sets, digital picture frames or
smart phones already present in nowadays homes and offices
and each of them owns plenty of peripherals such as displays,
keypads, cameras, NFC transceivers, sensors and so forth.

The remainder of this paper is structured as follows. In
section II we describe the basic principles and our motivation
in more detail. In section III we describe a simple abstract
protocol to bridge a UI gap between two devices that we
subsequently extend to more complex use cases and finally
refine to a concrete authenticated key exchange protocol. After
describing our proof of concept prototype in section IV, we
sum up this paper in section V.

II. BASIC PRINCIPLES AND MOTIVATION

In this section, we will examine authentication in smart
environments and derive the motivation of our work. As the
Devices Profile for Web Services (DPWS, [3]) is our underly-
ing communication middleware its properties and features are
briefly discussed in this section as well.

A. Authentication in Smart Environments

Stajano and Anderson stated in [4] that authentication is
the most interesting problem when it comes to embedded
device security. Once this is done, confidentiality can be easily
achieved. In existing communication middlewares, two ap-
proaches can be identified: brokered and direct authentication.

Brokered authentication means that few trusted parties in-
side a network delegate trust relationships between most other
participants (fig. 1 a)). This way, most participants need to
maintain only very few trust relationships. Examples for bro-
kered authentication are implemented in the Kerberos protocol



or public key infrastructures based on X.509 certificates and
certificate authorities (CA). Many middlewares (e.g. [5]), [6],
[7]) rely on this principle.

Instead of relying on brokered trust, participants can authen-
ticate each other directly. For that purpose, a one-time shared
secret is exchanged over a secure out of band channel which is
then used for an authenticated key establishment or exchange
protocol (e.g. a challenge-response-based exchange as we
proposed earlier in [8] or an authenticated Diffie-Hellman-
based establishment as in [9]). Exchanging the shared secret
OOB can happen by simply displaying and entering a pin. If
one participant lacks the necessary UI components alternative
channels can be used and an excessive amount of research has
been conducted on this. [10] gives a comprehensive overview
over possible mechanisms such as visual light channel ([11]),
(2D) bar codes ([12]) and audio ([13], [14]). Even IrDA, NFC
or acceleration sensors ([15]) could be used.

Both approaches have drawbacks. Brokered authentication
relies on an existing infrastructure and requires every partici-
pant to be deployed with its own credentials as well as the
credentials of chosen trusted parties. This appears feasible in
scenarios where all participants come from one manufacturer
but less likely for manufacturer-independent infrastructures.
However, when authenticating devices directly, every device
must maintain the credentials of every other party it needs
to communicate with (see fig. 1 b)). This potentially sums
up to (ten) thousands of credentials in smart home or office
scenarios. Direct authentication is also unlikely to work when
connecting different trust domains that can also be spatially di-
vided (e.g. different homes or satellite offices), while brokered
authentication works (fig. 1 c)).

Combining brokered and direct authentication leads to hy-
brid approaches that can overcome the drawbacks of both. If
there exists a brokered trust relationship between two devices,
it can be used completely transparent to the user. If however
no such link exists, it can be established directly. Using hybrid
authentication approaches is common and they are employed
in Mobile Gaia ([16]) and Amigo ([17]) for example.

A problem arises where direct authentication is necessary
but the two devices to be authenticated cannot establish an
OOB channel due to the lack of matching UI capabilities.
Considering the simplest-to-use example we defined earlier
employing light bulbs and switches ([18]) demonstrates the
problem. There is no way for a light bulb and a switch to
establish an OOB channel to exchange a shared secret.

It is the declared goal of this work to bridge these UI gaps
between different devices without supplying additional peri-
pherals. We will describe the developed protocols in section III
and present a working prototype in section IV.

B. The Devices Profile for Web Services

Planned as the successor of Universal Plug and Play, DPWS
became an independent technology ([3]). It provides a com-
munication middleware for embedded devices on the basis of
Web Services, allowing devices such as printers or scanners
to be easily deployed in existing network infrastructures.

Besides, DPWS increasingly gets employed in medical appli-
ances ([19]), wireless sensor networks ([20]) and automation
industry ([21]).

In DPWS, Devices can host different Services that can offer
Operations. Latter can be invoked by Clients. DPWS is based
on SOAP Web Services and provides classic request response
messaging pattern, as well as asynchronous communication.
It supports dynamic discovery without a central registry and
allows Clients to retrieve metadata about the Device itself as
well as its hosted Services.

The security concept of DPWS relies on profiles that can
be understood as a set of rules two parties agree on before
communicating. The DPWS specification document describes
such an optional profile ([3]) which bases on establishing TLS-
secured channels between devices. Where this is not applicable
(the discovery messages are sent via UDP multicast), traffic
gets signed by a compact signature mechanisms described in
WS Dynamic Discovery [22]. The necessary credentials are
provided by X.509 certificates and their matching private keys.
The process of authenticating or exchanging certificates is not
specified.

III. BRIDGING THE GAP

In this section we describe our approach on bridging UI
gaps. We discuss device classes we assume to exist in every
smart environment and show how they can cooperate for user-
friendly, secure bootstrapping.

A. Device Classes
In [23] Ben Saied et al. classify M2M-communication par-

ticipants in three groups: resource constrained nodes, nodes,
and high-power nodes. We adopted this classification with a
minor adjustment. We assume the following three categories:

Resource constrained nodes are e.g. sensors and actuators in
a smart environment. They have limited computational power
and memory and are likely to be battery driven. Since they
often are specialized on fulfilling a single task (e.g. ’measure
temperature’ or ’open window’), they also usually have very
few and limited control elements such as buttons, LEDs, etc.
and therefore support only few authentication mechanisms.

The other end of the scale are high-power nodes. Examples
are desktop PCs, laptops or control servers in maintenance
rooms. They most likely have a constant power supply and
sheer unlimited resources such as computational power, band-
width and memory. While they are extremely extensible in
terms of resources as well as control- and UI elements, they
usually are immobile or at least bulky.

What Ben Saied et al. consider in between high-power and
resource-constrained and what they call nodes, is what we call
UI Devices. Examples are e.g. smart phones. Although they in-
deed have moderate resources and they may be battery-driven,
this is not critical. What distinguishes them from the remaining
devices is their plethora of different UI capabilities. They offer
for example a keypad, LEDs, speakers, a microphone, NFC, a
camera, visible light, an HD display and acceleration sensors
- often all in a single device. Besides, they often are highly
mobile and usually carried with their user.



B. Basic Protocol

Given that we assume resource-constrained nodes, high-
power nodes and UI Devices in a network, we now describe
how they can provide user-friendly security bootstrapping.

1) Bridging with a UI Device: To explain the abstract
protocol, we consider an example consisting of a light bulb,
a switch and a smart phone. The light bulb is a DPWS
Device, offering a Service for light bulb status monitoring and
control and a Service for authentication. Its only possibility for
exchanging a one-time pin OOB is to flicker it. The wall switch
is a DPWS Client invoking the Operations of the Services
described above. Its only control element is the switch itself,
which can be on or off. This way, a key can be ’tapped in’
bitwise. The phone is the intermediary UI device and hosts
Device- and Client-functionality. For this example, it is at least
equipped with a display to show a pin to be tapped and a digital
camera to catch a pin flickered by the bulb in its binary form.

The abstract protocol is depicted in figure 2. After discover-

BulbSwitch Phone

1) Discovery

4) Request Authentication
with bulb

1.5) Metadata

2) Discovery

3) Metadata

5) Metadata

6) Request Authentication
for switch

7) OOB Key Exchange

8) Finish Authentication

Fig. 2. Indirect Authentication – Basic Protocol

ing the bulb it wants to switch (1), the switch optionally can
retrieve the bulb’s authentication service’s metadata to find out
if it offers an authentication method the switch supports (1.5)).
If this fails or to minimize its effort, the switch will look for
existing authentication devices and discovers the phone (2)).
By accessing the phone’s metadata (3), the switch makes sure
that they share at least one authentication mechanism, which
is ’tapping’ in this example. If this fails, the switch needs to
repeat steps 2) and 3) until it finds a suitable UI Device. We
assume, that at least one exists.

In step 4) the switch requests authentication with the bulb
from the phone as the mediator. It is the phone’s responsibility
to access and understand the bulb’s metadata to find an
authentication mechanism it can handle (5)). Now, the phone
can request authentication with the bulb on behalf of the
switch (6)). The reply containing the first credentials for
authentication is bypassed to the switch. After the bulb replied
to step 6), it flickers a one-time pin in its binary form which
can be read by the phone’s camera. At the same time, when
the switch received its reply to step 4) it waits for a key to
be tapped. So, once the phone read the flickered key, it can
display the pin in a way that a user can tap it in the switch.

After the PIN has been exchanged over the OOB channel(s),
the remainder of the authenticating handshake can take place.
The phone again bypasses messages from the switch to the
bulb and vice versa. For the switch and especially for the
bulb the use of the phone is completely transparent. There is
no difference to direct authentication. It should be noted, that
the phone is (and stays) an untrusted device (although it gets
authenticated implicitly). This does however not affect security
as it is in control of a legitimate user. Otherwise it would not
have access to at least one of the OOB channels.

2) Bridging larger UI gaps: The client is not aware of a
possible UI gap between the intermediary it chose and the
device it wants to authenticate with. Instead, it picks the first
UI Device that matches the client’s mechanisms and requests
authentication with the target (cmp. fig 2, steps 1)-4)). The

Retrieve Metadata
Dynamic Discovery existing trust relationship

Authentication handshake

BulbPhone2Phone1Switch

[1...4]

5)

6)

7)

8) 9)

10)

[...]
Key

Fig. 3. Bridging larger gaps

purpose of this behavior is to offload resource-intense tasks
such as discovery and metadata processing from the weakest
to stronger participants. If the intermediary determines that
it can handle none of the mechanisms offered by the target
(fig. 3, step 5)), it will conduct a discovery process for other
UI Devices (step 6) it already trusts and will examine their
capabilities (step 7)). It will repeat these steps until it finds
a matching, trusted UI Device. If this fails, it will discover
untrusted devices and authenticate with a matching one.

In steps 8) and ongoing authentication is conducted as
in the previous section with the only difference that there
are two intermediaries and handshake messages are bypassed
through both of them. This does not affect security since
both intermediaries are authenticated and thus can share all
information over a confidential channel. Again, this is com-
pletely transparent for Switch and Bulb. Also, Phone2 and
Phone1 behave exactly identical, as for Phone2, Phone1 simply
appears as a Client requesting authentication.

3) Connecting Trust Domains: The extension of the basic
protocol described in the preceding section can scale further to
a (theoretically) arbitrary number of intermediaries if indirect
and brokered authentication are combined as depicted in fig-
ure 4. The only prerequisite is that the participating high-power
nodes (hpn1,2) offer mechanisms of their trusted devices as
their own. In the example, this means that hpn1 offers its
own as well as hpn2’s mechanisms, while hpn2 also offers
hpn1’s and uid2’s. This way, authentication among several



hpn − high power node (e.g. server)

uid − UI device (e.g. phone)

existing trust relationship

rcn − resource constrained node (e.g. sensor)

rcn2hpn2hpn1rcn1 uid1 uid2

trust domain 1 trust domain 2

Fig. 4. Combining brokered and indirect authentication

intermediaries is still completely transparent to the resource-
constrained nodes and for the UI Devices. Also, employing
several intermediaries does not affect security since there is a
secure channel for every hop.

4) Discussion of the proposed protocols: The approaches
described above bring several advantages. They can bridge
UI gaps between devices without the necessity of brokered
authentication and enable direct authentication where this
has not been possible before. Regarding the device (e.g. the
bulb) this is completely transparent. The protocols are less
transparent for the client (e.g. the switch) but by letting
the UI device download and parse existing metadata from
the device (bulb) and deciding on suitable mechanisms, it
takes over very heavy-weight tasks from a critically resource-
constrained device. It should be stressed here, that no explicit
trust relationships between switch and phone and between
phone and bulb are formed and trust is simply brokered
subsequently. Instead, the phone remains unauthenticated. It
cannot be an attacker though, because the phone must be
controlled by the user. The approach dramatically gains in
momentum with every additional authentication mechanism
implemented (NFC, audio, QR codes, . . . ), as more and
more device pairs with very different UI peripherals can be
indirectly authenticated with each other.

C. Authenticated Key Exchange

After explaining the abstract protocols to bridge UI gaps to
connect trust domains, we can now derive a practical authenti-
cated key exchange protocol from them. Our proposed solution
bases on an authenticated Diffie Hellman key establishment
presented by Ho in [9].

1) Diffie Hellman revisited: The Diffie Hellman (DH) key
establishment protocol bases on asymmetric cryptography and
allows two parties to agree on a shared secret without ever
transmitting it. When using the lightweight elliptic curve
cryptography (EC) as underlying asymmetric cryptography,
the protocols works as follows. The two parties Alice and Bob
publicly agree on a selected elliptic curve G. Each party selects
its own secret key SK and both calculate their own public key
PK = SK × G. Alice and Bob exchange their public keys
and finally calculate the common shared secret, the so called
session key S = SA = SKA × PKB = SB = SKB × PKA.

2) Authenticated Diffie Hellman by Ho: The Diffie Hellman
protocol is easily breakable by means of a man-in-the-middle
attack (MITM), because the key-agreeing parties are not
authenticated ([24, cpt. 9.3.6]). In [9] Ho presents a suite of

authentication protocols for resource-constrained devices that
later became part of the IEEE 805.15.6 specification ([25])
defining Body Area Networks. It defines an unauthenticated
key agreement protocol based on Elliptic Curve Diffie Hellman
(ECDH) and describes ways to authenticate it. We focus on
his variant exchanging shared secrets via OOB channels, since
our protocols rely on this.

The solution presented by Ho relies on ECDH as described
above and assumes an already OOB-exchanged shared secret
PW (see fig. 5). To authenticate the key exchange, Ho

H =cmac(S, other )A A4)

5) verify H A

6)

HA

MK=cmac(S, nonce A |nonceB)

Bob

0)

Alice

PK’ =PK A−Q(PW)

Exchange PW,

A

SK , PK =SK ×G

Agree on G

SK , PK =SK ×GA A A B B B

A, nonce A, id A, id B

PKA=PK’A+Q(PW)

1) PK’

S=S =SK ×PKB B A

2) , nonce B, id A, id B, H B

3)

verify H B

PK

S=S =SK ×PK

B

BAA

=cmac(S, other )B BH

Fig. 5. Authenticated ECDH by Ho ([9]), classic ECDH colored gray

scrambles the public key of one participant using PW and by
deriving an additional elliptic curve point Q(PW ) in step 0.
Subsequently PK ′ = PK−Q(PW ) is transmitted instead of
PK and due to its knowledge of PW , the recipient can restore
PK = PK ′+Q(PW ) before step 2. In addition, Ho splits the
session key S. The first half is used to cryptographically hash
the relevant parameters otherA/B(including target and source
ids) using the CMAC algorithm. Computing, exchanging and
verifying these hashes HA and HB is a sufficient amount of
authentication by itself. The second half is used to derive the
master key MK from the random values nonceA and nonceB .

3) Proposed Solution: The authenticated key establishment
protocol proposed in this paper is based on the authenticated
key exchange by Ho described above and differs in only
two minor changes (see fig. 6). For one, the intermediaries

HB=cmac(PW, other B|PKB)

=cmac(PW, other |PK )HA A A
3)

BobAlice

1) [...]

[...]

[...]

Fig. 6. Difference in proposed solution, base by Ho ([9]) colored gray

described in the previous section need the ability to alter the
exchanged parameters (esp. used authentication mechanisms)
to be able to preserve transparency for Devices. This means,
that the intermediaries also need the ability to recompute the



cryptographic hashes HA and HB which is not possible when
the Diffie Hellman Session Key is required. Thus, the shared
secret PW is employed instead to compute the hashes.

Although an MITM attack is still prevented by the en-
cryption of the public key in the step 0, Alice and Bob
will not detect the attack but will simply be unable xto
communicate. For this reason both parties include their public
key in the cryptographic hash. In case of an MITM attack, hash
verification will fail before the master key MK is computed.
Both these adjustment do not increase the complexity of the
protocol. The only difference is the key used for the hashes
and an additional digest to consider when calculating the hash
and the security analysis Ho conducts in [9, sct.3] is still valid.

The resulting protocol is depicted in figure 7. First, Client

DeviceClient Peer

source, target, mechanism

(curve name)
PD

source, target, mechanism

curve name, nonce D

source, target, mechanism

(curve name)
CP

CP

source, target, nonce C source, target, nonce C

source, target, 

3)

5)

4)

1)

2)
source, target, mechanism PD
curve name, nonce D, PK’D, PK’D

PW PW

, PK C , PK C
H(PW, param CP) H(PW, param PD)

source, target, 

H(PW, param DP)H(PW, param PC)

Fig. 7. Authenticated Key Exchange

directs a request to authenticate with Device at Peer. This
request contains the source’s id, the destination’s id and
the authentication mechanism Client wants to use with Peer.
Optionally, Client may request an elliptic curve by submitting
the curve’s name. Peer bypasses this request by only replacing
the authentication mechanism with one that is suitable for both
Peer and Device. Device responds with its encrypted ECDH
public key, its nonce and the authentication mechanism and
elliptic curve it eventually uses (step 2)). Again Peer simply
bypasses by replacing the authentication mechanism. After the
shared secret has been transmitted over OOB channels in step
3), Client and Device both can calculate the ECDH session key
S that relies on the elliptic curve G, public and private keys
PK/SKC/D and the OOB-exchanged shared secret PW .

Client now triggers the remainder of the handshake in step
4). Therefore, it transmits its public key, its own nonce and
the cryptographic hash of the exchanged parameters (source,
destination, sent and received nonce, curve name, authen-
tication mechanism and public key) with the OOB shared
secret PW as the key. Peer needs to verify the received and
calculate a new cryptographic hash due to the replacement
of the authentication mechanism. Finally, Device responds
with its own hash in step 5, which Peer needs to verify and
recalculate as well. Both, Device and Client can verify the
received hashes. If verification succeeds, the key establishment
is successfully authenticated. Now, both Device and Client can
calculate the master key MK = H(S, nonceD|nonceC).

Eventually, Device and Client can derive keys for providing

confidentiality, integrity and authenticity from the master key
MK.

IV. PROTOTYPE IMPLEMENTATION

We implemented a proof of concept that consists of two
resource-constrained nodes (switch, light bulb) and a UI
Device that supports the protocol described in section III-B1.
Documentation as well as all source code and schematics are
freely available as open source at [26].

A. Materials

The following material, tools and hardware were used.
1) JMEDS: The Java Multi Edition DPWS Stack (JMEDS,

[27]) is an open source Java DPWS implementation ideal for
rapid prototyping. We used the latest release, as the time of
writing version 2beta8.

2) Bouncy Castle: The Legion of the Bouncy Castle pro-
vides ([28]) a crypto library for C# and Java. For the Java
applications implementing switch and light bulb (see below),
the library was used in version 1.49 to provide crypto func-
tionality, especially elliptic curve routines and the CMAC
algorithm. For the UI authenticator (see below) the Android
derivative spongycastle ([29] was used in version 1.47.

3) Raspberry Pi: The resource-constrained nodes were
implemented on Raspberry Pi Model B computers. These are
embedded Linux platforms with a 700MHz ARM11 CPU and
512MB RAM and an average power dissipation of around 3.5
Watts. Such a platform is not exactly resource constrained,
however, it is extremely inexpensive and very flexible as
it even runs Java Virtual Machines. Thus, it allows rapid
prototyping and implementing proof of concepts.

B. Light bulb and switch

The light bulb and the switch are both implemented in Java
with JMEDS and are executed on a Raspberry Pi Model B.
While the switch can be attached to a Pi’s GPIO, the bulb
needs to be interfaced using a relay and a driver circuit. The
bulb hosts an Authentication Service supporting the ECDH
handshake described above. It is also capable of flickering a
PIN in its binary form. The switch forms the DPWS Client
and provides the capability that a PIN can be ’tapped in’ in
its binary form for authentication purposes.

C. UI Authenticator

The UI authenticator is implemented as an Android App
incorporating JMEDS. The app’s core is a collection of plug-
ins providing support for different authentication mechanism.
Besides, the app offers DPWS Device capabilities to expose
the Authentication Service even if the app itself is not active.

1) User interaction flow: At this point, we describe the
functional behavior as presented to the user. Further docu-
mentation about the internals, communication and the app’s
architecture can be found at the project page ([26]). Pressing
the switch for 5 seconds triggers the protocol. A bulb and a
smart phone are discovered and authentication with the former
via the latter is requested. The smart phone plays an alarm



sound and shows a notification to the user. When the user
clicks on the notification, a live camera view is opened with
a cross hair overlay. The user is directed to aim at the bulb
and to start authentication by pressing a button. This makes
the bulb flicker a one-time pin which is read by the phone’s
camera. When finished, the user is presented with directions on
how to press and release the switch several times to tap in the
binary key into the switch. Subsequently, the OOB transfer of
the one time pin between bulb and switch was successful and
the remainder of the authenticated key establishment can take
place. Subsequently, the switch is able to direct authenticated,
and potentially confidential requests to the bulb.

2) Implemented Authentication methods: For the prototype
to work, we implemented flickering and tapping as authenti-
cation mechanisms. Former employs the phone’s camera and
determines the brightness of a small area depicted by a cross
hair to be aimed at a bulb. This way, the plugin can distinguish
the two states high (bright) and low (dark) and can thus read
a key in binary form. The tapping plugin presents a pin as a
sequence of ’press’/’don’t press’ states. This way, a pin can
be supplied to a switch. Furthermore, a plugin was written to
display and enter PINs in their numerical form, as this is a very
common use case and was helpful for debugging purposes.

The described protocols show their strengths for multiple
combinations of incompatible authentication mechanisms. In
future, we plan to incorporate further mechanisms depending
on emerging use cases. Some of them could be reading and
displaying QR-Codes, flickering using the phones flash LED
or exchange via NFC.

V. CONCLUSION AND OUTLOOK

In this paper we describe the problem of existing UI
peripheral gaps when directly authenticating devices with each
other in smart environments. To overcome this problem, we
propose a simple abstract protocol that incorporates additional
devices with plenty of UI peripherals, e.g. smart phones. We
extend the protocol for more complex use cases and refine it to
a concrete authenticated key establishment protocol based on
Elliptic Curve Diffie Hellman. We end this paper with present-
ing our freely available open source prototype implementation
which serves as proof of concept of our proposed protocols.

In near future, we plan to integrate additional authentication
mechanisms into the android application. NFC and QR codes
have top priority here. Furthermore, we plan to integrate
our WS Compact Security Scheme described in previous
work ([30]) into our implementation so it can be used with
keys derived from the authentication. Finally, all steps will
be conducted to implement the scenario depicted in fig 4
employing high-power nodes and brokered authentication.

REFERENCES

[1] M. Weiser, “The computer for the 21st century,” Scientific american,
vol. 265, no. 3, pp. 94–104, 1991.

[2] D. Masak, Digitale Ökosysteme - Serviceorientierung bei dynamisch
vernetzten Unternehmen. Springer, Berlin, 2009.

[3] OASIS, “Devices profile for web services version 1.1,” Juli 2009.

[4] F. Stajano and R. Anderson, “The resurrecting duckling: Security issues
for ad-hoc wireless networks,” in Security Protocols, 7th International
Workshop Proceedings. Springer Verlag, 1999.

[5] D. Conzon et al., “The virtus middleware: An xmpp based architecture
for secure iot communications,” in Computer Communications and
Networks (ICCCN), 2012 21st International Conference on, 2012.

[6] M. Handte et al., “D4.1 secure middleware specification - version 1.4,”
Peces - Pervasive computing in embedded systems, Tech. Rep., feb 2010.

[7] R. Baldoni et al., “An embedded middleware platform for pervasive and
immersive environments for-all,” in Sensor, Mesh and Ad Hoc Commu-
nications and Networks Workshops, 6th Annual IEEE Communications
Society Conference on, june 2009.

[8] S. Unger et al., “Extending the devices profile for web services for
secure mobile device communication,” in Internet of Things Conference
- TIoPTS Workshop, 2010.

[9] J.-M. HO, “A versatile suite of strong authenticated key agreement
protocols for body area networks,” in 8th International Conference on
Wireless Communication and Mobile Computing. IEEE, 2012.

[10] A. Kumar et al., “A comparative study of secure device pairing meth-
ods,” Pervasive and Mobile Computing, vol. 5, no. 6, 2009.

[11] N. Saxena et al., “Secure device pairing based on a visual channel,” in
IEEE Symposium on Security and Privacy, 2006.

[12] J. McCune et al., “Seeing-is-believing: using camera phones for human-
verifiable authentication,” in IEEE Symposium on Security and Privacy,
2005.

[13] M. Goodrich et al., “Loud and clear: Human-verifiable authentication
based on audio,” in 26th IEEE International Conference on Distributed
Computing Systems. IEEE, 2006.

[14] C. Soriente, G. Tsudik, and E. Uzun, “Hapadep: Human-assisted pure
audio device pairing,” in Information Security. Springer Berlin Heidel-
berg, 2008, vol. 5222, pp. 385–400.

[15] R. Mayrhofer and H. Gellersen, “Shake well before use: Authentication
based on accelerometer data,” in Pervasive Computing. Springer Berlin
Heidelberg, 2007, vol. 4480, pp. 144–161.

[16] S. Chetan et al., “Mobile gaia: a middleware for ad-hoc pervasive
computing,” in IEEE Consumer Communications and Networking Con-
ference (CCNC), 2005.

[17] M. Ahler et al., “Detailed design of the amigo middleware core security
& privacy , content distribution, data storage,” IST Amigo Project, Tech.
Rep., September 2005.

[18] S. Unger, S. Pfeiffer, and D. Timmermann, “How much security for
switching a light bulb – the soa way,” in Wireless Communications and
Mobile Computing Conference (IWCMC), 2012 8th International, 2012.

[19] S. Pöhlsen et al., “A dpws-based architecture for medical device in-
teroperability,” in World Congress on Medical Physics and Biomedical
Engineering, 2009.

[20] G. Moritz et al., “Devices profile for web services in wireless sensor
networks: Adaptations and enhancements,” in Emerging Technologies
Factory Automation, 2009. ETFA 2009. IEEE Conference on, 2009.

[21] ——, “Web services on deeply embedded devices with real-time pro-
cessing,” in Emerging Technologies and Factory Automation, 2008.
ETFA 2008. IEEE International Conference on, 2008.

[22] OASIS, “Web services dynamic discovery version 1.1,” July 2009.
[23] Y. Ben Saied, A. Olivereau, and M. Laurent, “A distributed approach

for secure m2m communications,” in The Fifth IFIP International
Conference on New Technologies and Security (NTMS 2012), Mai 2012.

[24] C. Eckert, IT-Sicherheit, Konzepte - Verfahren - Protokolle, 5th ed.
Oldenbourg Wissenschaftsverlag GmbH, 2008.

[25] I. C. Society, “Ieee standard for local and metropolitan are networks –
part 15.6: Wireless body area networks,” 2012.

[26] S. Unger. (2013) Sebastian unger / ws4d mobile authenti-
cator | gitlab. [Online]. Available: http://gitlab.amd.e-technik.uni-
rostock.de/sebastian.unger/ws4d-mobile-authenticator/wikis/home

[27] Materna GmbH. (2013) Jmeds (java multi edition dpws stack) —
free development software downloads at sourceforge.net. [Online].
Available: http://sourceforge.net/projects/ws4d-javame/

[28] The Legion of the Bouncy Castle. (2013) bouncycastle.org. [Online].
Available: http://www.bouncycastle.org/

[29] GitHub, Inc. (2013) rtyley/spongycastle. [Online]. Available:
https://github.com/rtyley/spongycastle

[30] S. Unger, S. Pfeiffer, and D. Timmermann, “Dethroning transport layer
security in the embedded world,” in 5th International Conference on
New Technologies, Mobility and Security (NTMS), 2012.


